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ABSTRACT	

One of the objectives of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) 
Integration Product Line (IPL) is to facilitate the deployment of the high-fidelity codes 
developed within the program. The Workbench initiative was launched in FY-2017 by the 
IPL to facilitate the transition from conventional tools to high fidelity tools. The Workbench 
provides a common user interface for model creation, real-time validation, execution, output 
processing, and visualization for integrated codes.  

This report details the efforts under way for integrating the Argonne Reactor Computation 
(ARC) suite of codes into the Workbench. The ARC codes contain both legacy codes like 
DIF3D and REBUS-3 that were developed with over 30 years of experience, and newer 
NEAMS additions like MC2-3 and PERSENT. These codes are extremely attractive by their 
flexible capabilities and computational efficiency. However, they require knowledge of 
reactor physics and experience on fast reactor design in order to be familiar with the extent of 
their capabilities. The ARC codes employ an inconvenient input system, and users mostly rely 
on scripts, developed based on their experiences, to generate inputs. For these reasons, it was 
decided to integrate the ARC codes within the NEAMS Workbench, and to provide the user 
with a new common input allowing to build a core model and to describe the calculations 
requested. 
This new type of integration into the Workbench was successfully demonstrated through this 
project as the MC2-3, DIF3D, REBUS-3, and PERSENT codes can be used through the 
Workbench for solving real problems. A fast reactor type of geometry can be modeled 
through the Workbench, as demonstrated with a simple benchmark problem. However, some 
advanced calculation methodologies such as heterogeneous cross-section treatment in MC2-3 
and equilibrium burnup calculation in REBUS-3 could not be implemented at this time and 
should be the focus of future effort.  

Integrating the ARC codes into the Workbench benefits directly the ARC community by 
providing a set of controlled, maintained and validated scripts to generate ARC inputs, which 
promotes best practices, and facilitates learning how to use the codes. The second benefit 
from this project results directly from taking advantage of the capabilities of the Workbench 
interface to improve the user experience with the ARC codes. The ARC codes are currently 
used through the Workbench by nuclear engineers at ANL and new users from universities 
will be trained in early FY-2018 as future efforts will focus on building some user experience.  

This project directly benefits the NEAMS program as it favors using the NEAMS codes such 
as MC2-3 and PERSENT. Future work should also focus on integrating high-fidelity codes 
such as PROTEUS into the Workbench, which should be performed using the same common 
input logic developed for the ARC codes.  
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1. Introduction	
One of the objectives of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) 
Integration Product Line (IPL) is to facilitate the deployment of the high-fidelity codes developed 
within the program. The Workbench [1] initiative was launched in FY-2017 by the IPL to 
facilitate the transition from conventional tools to high fidelity tools. The Workbench provides a 
common user interface for model creation, real-time validation, execution, output processing, and 
visualization for integrated codes. This report summarizes the significant efforts put toward 
implementing the Argonne Reactor Computation (ARC) suite of codes into the NEAMS 
Workbench. 

The ARC suite of codes has been developed at ANL since the 1980’s for fast reactor analysis. It 
gathers neutronics, thermal hydraulics, safety, and fuel behavior analysis codes, as displayed in 
Figure 1-1. The current focus of this study is on the ARC suite of deterministic neutronic codes, 
which contains the MC2-3 code for multi-group cross-section processing, the DIF3D code for flux 
calculation, REBUS-3 for depletion and equilibrium calculations, and PERSENT for perturbation 
theory calculations.  

These ARC codes are used at national labs, universities, and companies for fast reactor analysis. 
They gather more than 30 years of development, went through extensive validation and 
verification, and can solve complex physics phenomena in a very efficient way. However, these 
codes require knowledge on reactor physics and experience on fast reactor design in order to be 
familiar with the extent of their capabilities. The ARC codes employ an inconvenient input 
system, and users mostly rely on scripts, developed based on their experiences, to generate inputs.  

Integrating the ARC codes into the Workbench was initiated to address these challenges and to 
improve user experience with these codes by taking advantage of the various benefits brought by 
the Workbench interface. This report is intended for new users of the ARC codes within the 
Workbench, and for code developers that will integrate their codes into the Workbench. In 
Section 2, the method used for the implementation is detailed together with the list of 
developments that were needed. Section 3 describes the status of the implementations of the 
different ARC codes. A tutorial for users of the ARC codes through the Workbench was 
developed in Appendix A. Results from a simple benchmark problem are summarized in Section 
4 for demonstration purposes. Finally, Section 5 provides the main conclusions. 
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Figure 1-1. The Argonne Reactor Computation suite of codes. 
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2. Framework	for	ARC	integration	
The first question arising when integrating a code into the Workbench is whether one wants the 
user to specify the code’s input data using the code’s native input format, or provide a different 
input format. Giving the user direct access to the native input of the code requires a “white box” 
type of integration where the Workbench can use the code’s own input processing logic modules, 
while developing a new input format can require a “black box” type of integration where the 
Workbench must rely on an opaque code module that conducts the native input formatting. Very 
early on in this project, it was decided to use a “black box” type of implementation for the ARC 
codes. This is generally the natural solution when dealing with legacy codes with inconvenient 
inputs. In the case of the ARC codes, it is also consistent with the way these codes are used by 
nuclear engineers relying on scripts to help them process their different codes’ inputs. 

ARC Code Inputs

D
I
F
3
D

R
E
B
U
S

P
E
R
S
E
N
T

M
C
C
3

PyARC Module
• Translation into codes input language

(Black Box)

• Pre-processing

• Runtime environment

• Post-processing

Real-time input 
validation

Common Input Visualization

 
Figure 2-1. Structure of the ARC integration in the Workbench. 

The structure of the Workbench integration is illustrated in Figure 2-1: there are several 
components to the integration that are described in this section: 

• Workbench interface: It is developed at ORNL and designed to assist new users, while not 
obstructing experienced users. Several components of this interface are required for a 
code’s integration: 

o Common input  
o Templates 

o Visualization  
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• PyARC module: this is a python module required for “black box” integration that contains 
the logic for processing the code’s inputs, running them, and post-processing the outputs. 
This module is the glue between the Workbench interface and the ARC codes. 

2.1 Workbench	Interface	

2.1.1 Common	input		

Any type of code integration into the Workbench requires developing a “schema”. This document 
describes the structure and logic, or the definition, of the input, enabling the real-time validation 
and auto-completion capabilities of the Workbench. In the case of a “black box” integration, the 
schema describes the new type of input that will be seen by the user. This input is described as 
“common input” as it is used to generate inputs for MC2-3, DIF3D, REBUS-3, and PERSENT for 
integrated problem-dependent cross-section preparation, core analysis, depletion, and 
sensitivity/uncertainty analysis. The “arc.sch” schema was developed in close collaboration 
between ANL and ORNL teams and contains ~2000 lines of input definition. Both the common 
input and input schema are formatted in Standard Object Notation (SON) format, described in 
Figure 2-2.  

 

 
Figure 2-2. SON format description. 

 
This “common input” allows modeling a reactor geometry in an intuitive and flexible way. It was 
developed with continuous involvement of ARC users at ANL and is continuously going through 
some improvements after receiving first user’s feedbacks. For now, only fast-reactor types of 
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geometries (with a hexagonal lattice) is allowed for ARC codes use. However, should future 
integrated codes adopt this common input structure, additional types of geometries can be easily 
enabled or implemented. The structure of the input is summarized in Figure 2-3 and a tutorial was 
developed in Appendix A to explain in detail the input logic. 
 

 
Figure 2-3. Structure of the common input. 

2.1.2 Templates	

The Workbench contains the HierarchicAL Input Template Engine (HALITE) developed to 
expand hierarchical input data into code-specific input. Due to the complexity of the ARC native 
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inputs, it was decided for now to push the writing logic of the ARC native input logic into the 
PyARC module. Templates are still used to assist users in generating the common input within 
the Workbench. The common input templates were developed in parallel to the schema and the 
common input. Those are blocks of input with default values accessible for convenience to the 
user. A total of 73 templates were generated for the ARC codes. For instance, the user can 
directly access input blocks for different decay chains to fill out the REBUS-3 input, through the 
available templates.  

2.1.3 Visualization	

The Workbench provides two built-in types of visualization capabilities that the ARC integration 
could take advantage of, providing little development: 

- VisIT [11] 
Post-processing capabilities were added in the past to DIF3D and integrated in PERSENT for 
generating “vtk” files for results visualization with the VisIT software. VisIT being integrated 
into the Workbench allows direct visualization of the ARC post-processed outputs, as illustrated 
in Figure 2-1. Some development was needed in the runtime environment to allow generating the 
“vtk” files for DIF3D, REBUS-3 and PERSENT calculations. 

- Built-in plotting capability 
The Workbench interface supports plotting capabilities using line plots, histograms, bar charts, 
etc. Two types of line plots were implemented in collaboration with ORNL to display the multi-
group cross sections processed by MC2-3 (as also illustrated in Figure 2-1), and the region-wise 
flux spectrum printed by DIF3D and REBUS-3. Such plotting implementation requires 
developing a new “processor” file which often uses familiar command line utilities such as Grep 
and Awk to extract data to plot from the codes’ output. The processor files provide code 
integrators or regular users a means to extend Workbench post-processing visualization 
capabilities. 

2.2 PyARC	
As illustrated in Figure 2-1, the PyARC module is the glue between the Workbench interface and 
the ARC codes. For a “black box” integration, this glue is essential as it contains the logic to: 

• extract information from the common input entered through the Workbench 

• perform additional verifications that the validation engine of the Workbench cannot 
perform (for instance checking that the link to an input containing cross-sections or a 
decay chain is valid) 

• pre-process the information, calculating for instance homogenized atom densities in 
different regions 

• generate the ARC codes’ inputs 

• handle the runtime environment, for instance running MC2-3 elementary cell calculations 
in parallel on different CPUs 



ARC	integration	into	the	NEAMS	Workbench	

September	30,	2017	

 

	 7	 ANL/NE-17/31	 	

 

• post-process the outputs, printing out summary files with main results of the different 
codes’ outputs. 

The PyARC module is developed in Python through a collaborative environment on GitLab at 
code.ornl.gov so that new additions are tracked and reviewed. Pylint is used during the 
development process to check compatibility with PEP8 coding standards. This module is 
developed under the leadership of ANL with the assistance and contribution of the Workbench 
team at ORNL. The whole module contains ~3000 lines of python coding. The PyARC module 
relies on the following sub-modules: 

- PyARCModel: loads the input, performs list of additional verification, performs pre-
processing on the input. 

- PyARCUtils: contains utilities procedures 
- PyARCUserObject: defines variables and procedures that are used throughout the code 

- PyMCC3, PyTwoDant, PyREBUS, PyPERSENT: contain the logic for input writing, 
execution, and post-processing for each code 

- The PyARC module also relies on the PySCL module that is developed by ORNL to 
provide the standard composition library (SCL) in a consistent way between different 
codes 

Unit tests are developed for regression testing after each code modification and prior to 
committing and pushing modifications on the main branch. Currently, 45 unit tests are 
implemented to check the common input processing, interpretation of the standard composition 
library, input generation of MC2-3, DIF3D, REBUS-3, TwoDant, PERSENT, and post-processing 
of the outputs. Consequently, the unit tests check the pre-processing, input writing, and post-
processing logic of PyARC. The execution logic is currently tested through manual runs but will 
be integrated into a continuous integration test suite in the future that also includes integration and 
system tests of ARC codes execution.   
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3. Status	of	the	integration	
One of the benefit of the “black box” type of integration is that the user is shielded from the 
original input of the legacy codes. The associated challenge is that some of the options and code’s 
capabilities may not be made available to the user through the “black box”. The ARC integration 
using such a “black box” approach focuses on the most popular and important capabilities of each 
code. This chapter reviews the status of the ARC integration, listing the capabilities available for 
each code, and which capabilities will be integrated in the future, as also summarized in Table 
3-1. 
For any calculation, the user is provided with the ARC input files generated, the full output files, 
and a summary file that contains some post-processed data extracted for user-convenience 
purposes. Other files such as the ISOTXS and “vtk” files are returned as well. 

Table 3-1. Summary of the ARC integration. 

Codes Capabilities implemented in FY17 Future developments suggested 

MC2-3 -Homogeneous calculation 
-Region-wise flux condensation using 
TwoDant 

-Heterogeneous calculations 
-Gamma XS and delayed neutron 
constants 

DIF3D -Hex-z model 

-VARIANT, Nodal, FD 

-Other geometries 

-Gamma calculations 

REBUS-3 -Once-through depletion calculations -Equilibrium calculations 

PERSENT -Perturbation and Sensitivity calculations 
on eigenvalues, with option to update 
cross-sections  

-Perturbation and Sensitivity calculations 
on additional problems with depleted 
compositions 

-Uncertainty calculations 

3.1 MC2-3	

The MC2-3 code is developed within the NEAMS program for multi-group cross-section 
processing into an ISOTXS binary file. From the Workbench, one currently can generate cross-
sections for pre-generated or user-defined energy-group structure, on a mixture-type geometry, 
with different scattering orders. The user can lump cross-sections together to define lumped 
fission products for instance, or use pre-defined lumped elements.  

For region-wise flux condensation, two approaches were implemented with the Workbench. The 
first approach consists of generating neutron leakage files from the critical regions that can be 
used as external sources in the sub-critical regions. The second approach consists of using 
TwoDant, which is a SN neutron solver, for fine-mesh flux calculation using an equivalent 2D 
(RZ) core model. 
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Future work should focus on implementing the heterogeneous-type of modeling capabilities 
available with MC2-3 (based on 1D cylindrical or plate geometries) to provide enhanced accuracy 
to the multi-group cross-section generation. Calculation of delayed neutron constants and gamma 
cross-sections will also be required in the future.  
In terms of output processing, the multi-group cross-sections generated in the ISOTXS file can be 
plotted automatically in the Workbench interface using a specific “ISOTXS – ISOTOPE XS” 
processor developed at ORNL, as illustrated in Figure 3-1. 

 

 
Figure 3-1. Multi-group XS from ISOTXS file calculated and plotted by the Workbench. 

3.2 DIF3D	
The DIF3D code is a legacy code used for neutron and gamma flux calculations on various types 
of geometries, based on pre-generated cross-sections. Currently, only neutron flux calculations 
are integrated into the Workbench. The multi-group cross-sections can be generated using MC2-3 
calculations or a compatible set of previously calculated multi-group cross-sections. While 
DIF3D allows modeling various types of geometries (hexagonal, cylindrical, Cartesian…), only 
the hexagonal-z types of geometries are currently supported through the Workbench since those 
are the most popular ones used with DIF3D to model advanced reactors. The DIF3D code 
includes 3 neutron solvers (Nodal, FD (Finite Difference), and Variant) that were all enabled with 
the Workbench. 
Post-processing of DIF3D input was initiated by printing out the main information available for 
every area (defined as the whole core and every sub-assembly region) in the main summary file. 
The multi-group neutron flux spectrum can be plotted automatically, as shown in Figure 3-2, 
using the “Flux Spectrum” processor developed at ORNL. The dif3d_to_vtk utility code is 
automatically run after DIF3D execution to generate the “vtk” files allowing direct visualization 
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of the power density, neutron flux, atom densities, etc., using VisIT through the Workbench, as 
also shown in Figure 3-2. 
 

 
Figure 3-2. Example of visualizations available for DIF3D and REBUS-3: neutron flux 

spectrum (left) and power map (right) calculated and plotted with the Workbench. 

3.3 REBUS-3	
REBUS-3 is a legacy code used for depletion calculations using DIF3D solvers that allows a wide 
range of modeling options such as fuel shuffling, equilibrium and enrichment search. For 
preliminary implementation of REBUS-3 into the Workbench, only the once-through depletion 
capability was integrated. The main challenge associated with integrating REBUS-3 was to allow 
a user-specified decay chain, without making the Workbench input too complicated. This was 
achieved by providing an external text file containing the decay chain input from REBUS-3 
(cards 09, 24, 25), which is being parsed in PyARC. Future work should focus on including the 
enrichment and equilibrium search capabilities. In terms of post-processing, the same capabilities 
developed for DIF3D are made available with REBUS-3 at every time-step of the depletion 
calculation. 

3.4 PERSENT	
PERSENT is a perturbation theory code developed within the NEAMS program and based on the 
neutron transport equation in a Hex-Z geometry. It allows calculating feedback coefficients, 
sensitivity coefficients, and nuclear data uncertainties (when using a covariance matrix). Its 
integration was initiated in FY-17 by preparing the common input and associated templates, and 
implementing perturbation and sensitivity calculations on eigenvalue problems. The user can 
define which materials are perturbed with a change in density or in temperature. The cross-section 
of the perturbed composition can be automatically re-calculated both for perturbation and for 
sensitivity calculations.  
For illustration purposes, Figure 3-3 shows the distribution of the sodium void worth calculated 
on an SFR design and plotted within the Workbench. Table 3-2 displays the sensitivity of the 
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cross-sections of the main isotopes on the eigenvalue in an SFR core, as calculated and 
summarized with the Workbench. 

 
Figure 3-3. Sodium void worth distribution [kg-1] plotted and calculated by the Workbench. 
 

Table 3-2. Main isotopic and reaction breakdown of the sensitivity coefficients on the k-
effective of an SFR core, calculated and summarized by the Workbench. 

 
n Fission Capture Elastic Inelastic c TOTAL 

Na23    
-0.01% -0.01% 

 
-0.02% 

Fe56 
  

-0.01% 0.01% -0.03% 
 

-0.04% 

U238 0.11% 0.07% -0.15% 0.02% -0.06% 0.11% 0.10% 

Pu239 0.64% 0.47% -0.03% 
  

0.64% 1.71% 

In the future, perturbation theory calculations using PERSENT should be allowed on additional 
problems (delayed neutron fraction…) and at different time-steps (provided by REBUS-3). 
Uncertainty quantification will also be integrated. The framework for this was enabled in the 
PyARC module so that the workflow and input creation will be implemented in the future.  
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4. Verification	with	a	benchmark	problem	
Verification of the proper implementation of the ARC codes into the NEAMS Workbench is 
being conducted with unit tests as discussed in Section 2.2. Those check on different examples 
that the ARC inputs are properly generated and the correct information is extracted from the 
outputs. The objective of this section is rather to demonstrate the usefulness of the ARC 
Workbench implementation by applying it to solve an international benchmark problem. 
The OECD/NEA sub-group on Uncertainty Analysis in Modelling (UAM) for Design, Operation 
and Safety Analysis of Sodium-cooled Fast Reactors (SFR-UAM) has been formed under the 
NSC/WPRS/EGUAM and specified a series of benchmarks [12, 13]. For demonstration purposes 
of the already implemented capabilities available in the Workbench, the fuel assembly depletion 
benchmark proposed within the SFR UAM was modeled using the ARC codes through the 
Workbench. The description of the oxide-fueled assembly model is detailed in [12]. Preliminary 
results from 9 contributing participants for this depletion benchmark were published in [13] and 
the eigenvalue depletion evolution is shown in Figure 4-1. Other parameters, such as the neutron 
flux, reactivity coefficients, and isotopic compositions are compiled as well, but were not 
considered in this work. 
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ECCO/ERANOS	2.3	- JEFF-3.1	(CEA)
 

Figure 4-1. Eigenvalue burnup evolution comparison within participants of the SFR UAM 
assembly depletion benchmark. 
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ANL contributed to this benchmark using the ARC codes with reference calculation route 
(described as “Ref, Hete-E7.1, LFP” in Figure 4-1), with heterogeneous processing of the cross-
sections from ENDF/B-VII.1, and its reference decay chain based on lumped fission products 
(LFP). Updated results obtained with the Workbench using various nuclear data libraries 
(ENDF/B-VII.0 and .1) and decay chains (based on Mo for representing fission products, on 
reference LFP, and on an explicitly detailed decay chain) were added to this comparison in Figure 
4-1 and show consistent results with other participants. However, these updated results display a 
lower k-infinite of 435 pcm when compared to reference ANL results. This discrepancy is 
primarily explained by the lack of heterogeneous cross-section treatment currently available with 
MC2-3 in the Workbench.  
Future benchmark analysis should include the full core SFR analysis described in the SFR UAM 
benchmark specification [12], and should be conducted once the 1D heterogeneous cross-section 
treatment of MC2-3 is implemented in the Workbench to display improved agreement with other 
participants. 
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5. Conclusions	and	Future	work	
The Workbench initiative was launched in FY-2017 within the NEAMS program to facilitate the 
transition from conventional tools to high-fidelity tools, employing a bottom-up approach. The 
Workbench provides a common user interface for model creation, real-time validation, execution, 
output processing, and visualization for integrated codes. 

This report details the efforts under way for integrating the Argonne Reactor Computation (ARC) 
suite of codes into the Workbench. The ARC codes contain both legacy codes like DIF3D and 
REBUS-3 that were developed with over 30 years of experience, and newer NEAMS additions 
like MC2-3 and PERSENT. These codes are extremely attractive by their flexible capabilities and 
computational efficiency. However, they require knowledge on reactor physics and experience on 
fast reactor design in order to be familiar with the extent of their capabilities. The ARC codes 
employ an inconvenient input system, and users mostly rely on scripts, developed based on their 
experience, to generate inputs. For these reasons, it was decided to integrate the ARC codes 
within the NEAMS Workbench, and to provide the user with a new common input allowing to 
build a core model and to describe the calculations requested. 

This new type of integration into the Workbench was successfully demonstrated through this 
project as the MC2-3, DIF3D, REBUS-3, and PERSENT codes can be used through the 
Workbench for solving real problems. For demonstration purposes, these codes were used 
through the Workbench for modeling a Fast Reactor type of geometry and for solving the SFR-
UAM assembly depletion benchmark. However, some advanced calculation methodologies such 
as heterogeneous cross-section treatment in MC2-3 and equilibrium burnup calculation in 
REBUS-3 could not be implemented at this time and should be the focus of future effort. 
Additional work is also needed to continue the PERSENT integration that was initiated this year. 

Integrating the ARC codes into the Workbench benefits directly the ARC community by 
providing a set of controlled, maintained and validated scripts to generate ARC inputs, which 
promotes best practices, and facilitates learning how to use the codes. The second benefit from 
this project results directly from taking advantage of the capabilities of the Workbench interface 
to improve the user experience with the ARC codes: the Workbench provides assistance for 
building an input through auto-completion, real-time validation, and access to templates, and for 
post-processing the output with access to visualization. The ARC codes are currently used at 
ANL through the Workbench by nuclear engineers for SFR core design analysis and by a summer 
intern to conduct some benchmark exercises. University faculty from Penn State University and 
North Carolina State University expressed interest in participating in the early user group and will 
be trained in early FY-2018. Future efforts should focus on building a broader user experience.  

This project directly benefits the NEAMS program as it favors using the NEAMS codes such as 
MC2-3 and PERSENT. Future work should also focus on integrating high-fidelity codes such as 
PROTEUS into the Workbench, which should be performed using the same common input logic 
developed for the ARC codes. 
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Appendix	A:	Tutorial	
Workbench files are made up of a series of blocks containing keywords (bolded in this tutorial).  
Most keywords require other keywords to follow them, creating ‘levels’ of keywords within 
keywords. When a keyword with a higher level is selected by autocomplete, a pair of brackets 
will appear along with the keyword. All other keywords that come below must be inside these 
brackets.  The user can access the list of keywords available in a block through the auto-
completion. It is recommended that the user keeps the end brackets lined up with the 
corresponding keyword and indent for each new (lower) level. The main structure of the common 
input is presented in Figure 0-1 and each block/sub-block is presented in this tutorial. 

 
Figure 0-1. Structure of the common input. 
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1. geometry	
The geometry block is where the user defines the geometry modeled. It contains three mandatory 
sub-levels: materials, surfaces and regions_reactor. The blends block is not mandatory but can 
also be defined within geometry. This section describes each of these sub-blocks. 

1.1 materials	

The materials block is mandatory as at least one material sub-block should be defined. A 
material sub-blocs requires a name (which should be unique) and a temperature (in Kelvin). 
Workbench allows several different ways to define the isotopic content of a material: with 
weight fractions, atom fractions, atom densities, weight densities, and atom formula. Different 
types can be used within the same input.  

• wfrac : weight fractions 

• afrac : atom fractions 

• adens : atom densities 
o lumped_element_aden : atom density of lumped fission products defined in 

calculations/mcc3/lumped_element_text_file 

• wdens : weight densities 

• aform : atom formula.  aform is useful for compounds.  

 
In “aform (x)” x=the number of that atom in the compound  

 
Example 1: UO2 with 7% enriched uranium 
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1.2 blends	
The blends block is not mandatory but can be used to combine materials, which can be useful for 
homogenized compositions.   
Example 2: Blends could be used as the material in assembly_hex to define homogenized 
compositions. They require definition of individual materials (fuel_material, sodium, cladding, 
structure, and b4c). 

 

1.3 surfaces	
The first step toward building the geometry is to define surfaces. The choices currently available 
are hexagons with axis=y (the y axis intersects two opposite vertices of the hexagon and the 
hexagonal prism extends vertically in the z direction, see Figure 1-1), cylinders along the z axis, 
and planes perpendicular to the z axis.  For hexagons, “pitch” means flat-to-flat distance.  All 
dimensions are in meters. Boundary conditions can be specified for each surface: extrapolated 
(default), reflective, periodic, and vacuum. These conditions may be over-written by the option 
used in calculations/dif3d/geometry_type. 
 

1.4 regions_reactor	
After surfaces, the next keyword is regions_reactor, which is required. Here the 
lower_axial_surf and upper_axial_surf refer to the entire system (other axial sections can be 
defined later under sub_assembly_hex).  
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1.4.1 core_hexlattice	

core_hexlattice is the next keyword which is also required.  This is where the general layout of 
the core’s hexagonal lattice is defined. Figure 1-1 is important as it shows the location in a ring 
where the indexing starts. 

 

1,	1 2,	1

2,	22,	3

2,	4

2,	5 2,	6

2:	Ring	
Num.	

3:assembly	
index

y

x

y

 
Figure 1-1. Radial layout for the hexagonal lattice. 

• assembly_surf: Change “surface_hex_name” to the name of the hexagon previously 
defined under surfaces for the assembly boundary.  

• num_ring: the number of rings in the lattice (center is ring 1).  

• fill: Assuming for now that in each ring, every assembly in that ring is the same type, fill 
says which type of assembly (defined in Section 1.4.2) is in which ring.  The list goes in 
order starting with ring 1 and moving outward.  The details of the different assemblies 
will be defined later under assembly_hex. 
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Example 3: 
 core_hexlattice { 
  assembly_surf = your_hex_surface_name 
  num_ring = 5 
  fill = [ orange blue green yellow blue ]  
 } 

 
Figure 1-2. Core layout for Example 3. 

In fill, the third ring was set to be green assemblies, but this can be overridden with replace_ring 
or replace to define any assemblies that are different from the rest of the ring.   

• To define any assemblies that are a different type from whatever was defined for its ring 
(the “exceptions”), replace_ring or replace can be used (but not both for the same ring).   

 

Example 4:  

 
Figure 1-3. Core layout for Example 4. 

The layout in the picture above could be described by either: 
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core_hexlattice { 
  assembly_surf = your_hex_surface_name 
  num_ring = 5 
  fill = [ orange blue green yellow blue ] 
  replace_ring (3) = [ orange green green green orange green green  
green orange green green green ]   
 } 

or 
core_hexlattice { 
  assembly_surf = your_hex_surface_name 
  num_ring = 5 
  fill = [ orange blue green yellow blue ] 
  replace{ ring=3 index=1 name=orange }  
  replace{ ring =3 index=5 name=orange }  
  replace{ ring =3 index=9 name=orange }  
 } 

1.4.2 assembly_hex	

Now that the layout of the lattice is built.  The next thing to do is define the details and 
composition of each assembly.  This is done with assembly_hex.   
 

 
Change “assembly_hex_name” to one of the assembly types that was used in fill (“orange”, 
“blue”, “green”, or “yellow” for the examples above) 

• sub_assembly_hex 
At least one sub_assembly_hex is necessary for every assembly_hex. If the assembly is uniform 
throughout, only one sub_assembly_hex is needed.  Use more if the assembly has different axial 
regions.   

Change “sub_assembly_hex_name” to a name that describes the region.   
 

Examples 5-8 demonstrate geometry and materials only, ignore options for now.  
Example 5: Uniform homogenous assembly without different axial sections 
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Here z0 and z20 are the top and bottom of the entire region being modeled (including other 
assemblies), since there are no other sub_assembly_hex’s in this assembly_hex.  z0 and z20 
should also be listed as the lower and upper surfaces under regions_reactor one level above.  
This assembly is homogenous and filled with material1.   
 
Example 6: Different axial sections but each is homogenous 
 

     
Figure 1-4. Axial regions for Example 6. 

 
Here plane1 and plane4 are the boundaries of the entire model.  Each axial region is 
homogenous with a separate material.   
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Example 7: One axial section with pins 

  

 
Figure 1-5. Pin lattice for Example 7. 
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This example only has one axial region (there is only one sub_assembly_hex), so the pins extend 
the whole length. This geometry can be seen in Figure 1-5. 
 

When building a lattice of pins:  
v Don’t include inner_surf for the central region.   

v fill and replace/replace_ring are used to define the layout of the pins in the same way as 
for the assemblies.   

v Undefined space between pin regions will be void.   
v In some cases, the code may fill undefined regions with the “outer” material for 

homogenized calculations.  It is recommended that the user not leave any space 
undefined.  One way around this is to make a “void” material that has a very low 
atom density.   

v For wire_wrap, path is the height of one turn of the wire.   

 
Example 8: Radial regions 
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Figure 1-6. Radial regions for Example 8. 

radial_region makes rings in the subassembly out of cylinders or hexagons.  radial_region can 
be used along with assembly_hexlattice. Any undefined space between radial regions will be 
void.   

It is recommended that the user not leave any space undefined.  One way around this is to 
make a “void” material that has a very low atom density.   
For explicitely defined sub-assembly (with radial region or hexlattice), the volume fraction of 
each elementary material calculated in the homogenized material is printed out in the summary 
file. 

1.4.3 options	

options is necessary for each sub_assembly_hex. It provides options for deterministic codes on 
the calculations to perform for each subassembly region.   

• mcc3:  

 
Replace “id” with either a letter or number between 0 and 9 to identify this calculation. Table 1-1 
provides more information about the MCC3 options.  
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Table 1-1. Keywords under 
geometry/regions_reactor/assembly_hex/sub_assembly/hex/options/mcc3. 

calculation “mixture” (“cylinder” is also a choice but it is not implemented yet) 

buckling_search generally, “true” for fissile regions if 2-step RZ procedure is not employed, 
“false” otherwise 

external_source the id of another mcc3 calculation.  For a non-fissile region, the user can 
choose to use the neutron leakage data from another mcc3 calculation as an 
external source to this mcc3 calculation. 

 

• mcc3_existing: If two regions have similar composition, the multi-group cross-sections 
calculated with MCC3 from one region can be used for the other, instead of doing 
separate calculations for each subassembly, which saves time.  In this case, replace 
“id_name” with the id of the mcc3 calculation that is to be reused.   

• dif3d: 
o num_axial_burnup_zones: This provides the option to refine the mesh for 

depletion calculations.    
 

2. calculations	
The calculations block describes the list of calculations requested by the user and provides main 
options. It contains the mcc3 and dif3d sub-level, dif3d contains also the rebus and persent sub-
levels. It also contains the num_cpu_max option which provides the maximum number of CPUs 
used for parallel computing of different MC2-3 cell calculations. 

2.1 mcc3	

Table 2-1 summarizes the options available or required for running MC2-3. The MC2-3 code can 
be run as a stand-alone code to generate multi-group XS, or can be used together with a 2D full-
core calculation code (such as TwoDant), which options are listed in Table 2-2. 
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Table 2-1. Keywords under calculations/mcc3. 

xslib “endf7.0” and “endf7.1” are the only cross section library 
currently available 

egroupname * if using an energy group structure known by mcc3, choose either 
“anl33”, “anl70”, “anl230”, “anl1041”, or “anl2082”   

egroupvals * if using other energy groups, list the boundaries (not including 0) 
of the energy groups in eV. 

scattering_order 1,3,5… scattering order for multi-group XS 

run_mcc3** “true” runs mcc3, or “false” skips mcc3 if an isotxs file is 
provided.  

lumped_element_text_file name of file containing composition of the lumped element used 
in the material definition or in the decay chain 

RZ_core_options This option increases the accuracy of multi-group XS by 
condensing them based on the correct fine-mesh flux calculated 
using RZ modeling. See table Table 2-2. 

*Use either egroupname or egroupvals but not both.  
**If mcc3 was already performed, the user may not want/need to run it again, in which case the 
user can use “run_mcc3=false” This would be the case for example if the only changes that were 
made since the last run related to dif3d and rebus calculations.  Then choosing “false” will save 
the time of running mcc3.  When using “false” the user will need to provide an isotxs file for the 
dif3d, rebus, and/or persent calculations under calculations/dif3d/isotxs.  An isotxs file is 
generated when mcc3 does run, so this file can be re-used.  
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Table 2-2. Keywords under calculations/mcc3/RZ_core_options. 

code “twodant” (“partisan” is also a choice, but not available yet) 

egroupname “anl33”, “anl70”, “anl230”, “anl1041”, or “anl2082” (choose one) 
 

This is the fine-group structure that should be used in the RZ 
calculation. It is recommended to use the ANL1041 group structure. It 
should contain more energy groups than the one used with mcc3. 

R_boundaries boundaries of the different areas in the R direction. 

R_nodes_distantance distance between each node in the R direction, recommended 0.05 m 

Z_boundaries boundaries of the different areas in the Z direction. 

Z_nodes_distance distance between each node in the R direction, recommended 0.08 m 

SN_angular_order angular order for the transport approximation with SN method. 
Recommended ≥ 12 

RZ_geometry Fill out the areas with mcc3 ID number here to define the RZ core 
modeled. The number of columns must equal number of R boundaries 
and number of rows must equal number of Z boundaries.  The first row 
of mcc3 ID’s is the bottom of the core and the last row is the top of the 
core.   

 

How to get an equivalent RZ geometry? calculate the number of assemblies represented by 

each mcc3_id. Calculate the area for each region: the area of an hexagon is equal to ! = #
$ %

$   
with p the pitch of the assembly. Find the “equivalent radius” by solving for r in A=πr2.  

 

2.2 dif3d	
The user needs to specify which solver they want to use: DIF3D-FD, DIF3D-Nodal, or 
VARIANT and provide the associated options.  Table 2-3 summarizes the options available or 
required to specify the DIF3D calculation.   
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Table 2-3. Keywords under calculations/dif3d. 

power power of the full core in W (doesn't include the symmetry) 

geometry_type  hexagonalz_infinite_lattice *, hexagonalz_full_core, 
hexagonalz_sixth_core**, hexagonalz_third_core**, 
triangualrz_full_core 

isotxs “previous” tells the code to use the cross sections isotxs file generated 
from the previously defined mcc3 calculation.  
If the user already has a valid isotxs file, they can specify it here and 
disable the MCC3 calculation by using the “run_mcc3 = false” option. 

max_axial_mesh_size maximal axial distance between each calculation node used in the 
DIF3D model.   

dif_fd_options*** if triangularz geometry is used, the user can specify a triangular 
subdivision of the assembly mesh. 

dif_nod_options*** the user can provide the option to perform the coarse mesh rebalance. 

variant_options*** The user needs to specify variant option with polynomial and angular 
approximation and anisotropic scattering. Default values are provided 
but higher/lower fidelity may be needed depending on the core 
analyzed. 

* hexagonalz_infinite_lattice only works with one subassembly and forces symmetry 

** hexagonalz_sixth_core and hexagonalz_third_core will force symmetry even if the whole core 
that the user built does not have that type of symmetry, without giving any error message.  The 
user should make sure to select the proper geometry type for their problem.   
*** can only have one of dif_fd_options, dif_nod_options, or variant_options 

 

2.2.1 rebus	

Table 2-4 summarizes the options available or required for REBUS-3, and Table 2-5 lists the 
requirements for the decay chain.     
 

 
 



 ARC	integration	into	the	NEAMS	Workbench	

September	30,	2017	

 

ANL/NE-17/31	 30	 	

	

Table 2-4. Keywords under calculations/dif3d/rebus. 

cycle_length cycle length in equivalent full power days 

shutdown_time_between_cycle shutdown time between cycles in days 

num_cycles number of cycles to be performed 

num_subintervals number of sub-intervals within each cycle 

list_materials_depleted informs which material will need to be depleted 

decay_chain The user can define their own decay chain, in which case he 
needs to specify everything in Table 2-5, or can use one of 
the decay chains provided. 

 
Table 2-5. Keywords under calculations/dif3d/rebus/decay_chain. 

list_isotopes all isotopes part of the decay chain (heavy nuclei and fission products 
if explicitly defined) 

list_lumped_elements names of lumped elements if defined lumped elements are used 

list_dummy_elements name of dummy elements if defined dummy elements are used 

text_file  path to decay chain file that provides the decay chain in REBUS-3 
format 

 

2.2.2 persent	

Persent calculation requires using variant_options in dif3d. There are three keywords under 
persent: pert_calc, sens_calc, and uncert_calc.  
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pert_calc is used for perturbation theory calculations. It requires to define a perturbed state for 
the core considered to calculate the difference in reactivity with the reference state. A 
perturbation calculations requires “pert_id” which can be any available letter. The instructions for 
pert_calc are explained in Table 2-6.  
 

 
 

Table 2-6. Keywords under calculations/dif3d/persent/pert_calc.  

depletion_step 0 (capability for other time steps not yet 
implemented) 

pert_type “keff” (“lambda_beta” not implemented yet) 

material_perturbation can define multiple material perturbed, at least 
one required 

• list_isotopes_perturbed “all_from_material” or can list any isotopes 
from the material 

• density_perturbation_factor * factor by which the density of the isotopes 
perturbed will be multiplied 

• new_temp * new temperature of the isotopes perturbed 
(requires xs_updated = true) 

xs_updated “true” or “false” to indicate whether cross-
sections will be recalculated for the perturbed 
state 

pert_option “first_order_perturbation_theory” or 
“general_perturbation_theory” 

* must use density_perturbation_factor or new_temp, not both. 
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sens_calc is used for sensitivity calculations on multi-group cross-sections calculated with MC2-
3. Sensitivity calculations can be calculated on the reference core or on a perturbed state. A 
sensitivity calculation requires a “sens_id”, which is any available letter.  The instructions for 
sens_calc are explained in Table 2-7.  
 

Table 2-7. Keywords under calculations/dif3d/persent/sens_calc.  

depletion_step 0 (capability for other time steps not yet 
implemented) 

sens_type “keff” (“lambda”, “beta” not implemented yet) 

sensitivity_regions list of ids from options/mcc3 on which the 
sensitivities are calculated 

list_isotopes “all_from_sensitivity_regions” or can list any 
isotopes in the region 

list_reactions choose any or all reactions within: “fission” 
“chi” “capture” “elastic” “inelastic” “nu” “n2n” 
“plelastic” 

material_perturbation optional, can define multiple material 
perturbed to calculate sensitivity on the core in 
a perturbed state. 

• list_isotopes_perturbed “all_from_material” or can list any isotopes 
from the material 

• density_perturbation_factor * factor by which the density of the isotopes 
perturbed will be multiplied 

• new_temp * new temperature of the isotopes perturbed 
(requires xs_updated = true) 

xs_updated “true” or “false” to indicate whether cross-
sections will be recalculated for the perturbed 
state 

sensitivity_factor factor by which the cross-sections are increased 
for the sensitivity analysis 

* must use density_perturbation_factor or new_temp, not both. 
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uncert_calc is used for uncertainty calculations. These are not implemented yet. Replace 
“uncert_id” with any available number.  The instructions for uncert_calc are explained in Table 
2-8.  

 
Table 2-8. Keywords under calculations/dif3d/persent/unert_calc.  

sens_ref takes the id of sensitivity used in a reference-
state core 

sens_pert optional, takes the id of sensitivity used in a 
perturbed-state core 

covariance_matrix_text_file takes the file name of a covariance matrix 
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